Limiting Profiles of Semilinear Elliptic Equations with Large Advection in Population Dynamics II
نویسنده
چکیده
Limiting profiles of solutions to a 2×2 Lotka–Volterra competition-diffusion-advection system, when the strength of the advection tends to infinity, are determined. The two species, competing in a heterogeneous environment, are identical except for their dispersal strategies: one is just a random diffusion, while the other is “smarter”—a combination of random diffusion and a directed movement up the environmental gradient. In the previous paper of Lam and Ni [Discrete Contin. Dyn. Syst. 28 (2010), pp. 1051–1067], it is proved that in one space dimension, for large advection the “smarter” species concentrates near a selected subset of positive local maximum points of the environment function, establishing a conjecture proposed by Cantrell, Cosner, and Lou. With a different method, we generalize this result to any dimensions with the peaks located under mild hypotheses on the environment function. Moreover, a Liouville-type result which gives the asymptotic profile is proved.
منابع مشابه
Limiting Profiles of Semilinear Elliptic Equations with Large Advection in Population Dynamics
Abstract. Limiting profiles of solutions to a 2×2 Lotka-Volterra competitiondiffusion-advection system, when the strength of the advection tends to infinity, are determined. The two species, competing in a heterogeneous environment, are identical except for their dispersal strategies: One is just random diffusion while the other is “smarter” a combination of random diffusion and a directed move...
متن کاملConcentration Phenomena of a Semilinear Elliptic Equation with Large Advection in an Ecological Model
We consider a reaction-diffusion-advection equation arising from a biological model of migrating species. The qualitative properties of the globally attracting solution are studied and in some cases the limiting profile is determined. In particular, a conjecture of Cantrell, Cosner and Lou on concentration phenomena is resolved under mild conditions. Applications to a related parabolic competit...
متن کاملExistence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملA two-phase free boundary problem for a semilinear elliptic equation
In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary. We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 44 شماره
صفحات -
تاریخ انتشار 2012